0 JBC
↳1 JBC2FIG (⇒)
↳2 JBCTerminationGraph
↳3 FIGtoITRSProof (⇒)
↳4 IDP
↳5 IDPNonInfProof (⇒)
↳6 IDP
↳7 IDependencyGraphProof (⇔)
↳8 IDP
↳9 IDPNonInfProof (⇒)
↳10 IDP
↳11 IDependencyGraphProof (⇔)
↳12 TRUE
/**
* A recursive loop.
*
* All calls terminate.
*
* Julia + BinTerm prove that the call to <tt>test()</tt> terminates.
*
* @author <A HREF="mailto:fausto.spoto@univr.it">Fausto Spoto</A>
*/
public class Double {
private static void test(int n) {
for (int i = 0; i < n; i++)
test(i);
}
public static void main(String[] args) {
test(10);
}
}
Generated 18 rules for P and 2 rules for R.
Combined rules. Obtained 2 rules for P and 0 rules for R.
Filtered ground terms:
154_0_test_Store(x1, x2, x3) → 154_0_test_Store(x2)
Cond_264_1_test_InvokeMethod(x1, x2, x3, x4, x5) → Cond_264_1_test_InvokeMethod(x1, x3, x4, x5)
254_0_test_Return(x1) → 254_0_test_Return
Cond_154_0_test_Store(x1, x2, x3, x4) → Cond_154_0_test_Store(x1, x3)
Filtered duplicate args:
264_1_test_InvokeMethod(x1, x2, x3, x4) → 264_1_test_InvokeMethod(x1, x2, x4)
Cond_264_1_test_InvokeMethod(x1, x2, x3, x4) → Cond_264_1_test_InvokeMethod(x1, x2, x4)
Combined rules. Obtained 2 rules for P and 0 rules for R.
Finished conversion. Obtained 2 rules for P and 0 rules for R. System has predefined symbols.
!= | ~ | Neq: (Integer, Integer) -> Boolean |
* | ~ | Mul: (Integer, Integer) -> Integer |
>= | ~ | Ge: (Integer, Integer) -> Boolean |
-1 | ~ | UnaryMinus: (Integer) -> Integer |
| | ~ | Bwor: (Integer, Integer) -> Integer |
/ | ~ | Div: (Integer, Integer) -> Integer |
= | ~ | Eq: (Integer, Integer) -> Boolean |
~ | Bwxor: (Integer, Integer) -> Integer | |
|| | ~ | Lor: (Boolean, Boolean) -> Boolean |
! | ~ | Lnot: (Boolean) -> Boolean |
< | ~ | Lt: (Integer, Integer) -> Boolean |
- | ~ | Sub: (Integer, Integer) -> Integer |
<= | ~ | Le: (Integer, Integer) -> Boolean |
> | ~ | Gt: (Integer, Integer) -> Boolean |
~ | ~ | Bwnot: (Integer) -> Integer |
% | ~ | Mod: (Integer, Integer) -> Integer |
& | ~ | Bwand: (Integer, Integer) -> Integer |
+ | ~ | Add: (Integer, Integer) -> Integer |
&& | ~ | Land: (Boolean, Boolean) -> Boolean |
Integer, Boolean
(0) -> (1), if ((x0[0] > 0 →* TRUE)∧(x0[0] →* x0[1]))
(0) -> (2), if ((x0[0] > 0 →* TRUE)∧(x0[0] →* x0[2]))
(1) -> (3), if ((154_0_test_Store(0) →* 254_0_test_Return)∧(x0[1] →* x0[3])∧(0 →* x1[3]))
(2) -> (0), if ((0 →* x0[0]))
(3) -> (4), if ((x1[3] >= 0 && x0[3] > x1[3] + 1 →* TRUE)∧(x0[3] →* x0[4])∧(x1[3] →* x1[4]))
(3) -> (5), if ((x1[3] >= 0 && x0[3] > x1[3] + 1 →* TRUE)∧(x0[3] →* x0[5])∧(x1[3] →* x1[5]))
(4) -> (3), if ((154_0_test_Store(x1[4] + 1) →* 254_0_test_Return)∧(x0[4] →* x0[3])∧(x1[4] + 1 →* x1[3]))
(5) -> (0), if ((x1[5] + 1 →* x0[0]))
(1) (>(x0[0], 0)=TRUE∧x0[0]=x0[1] ⇒ 154_0_TEST_STORE(x0[0])≥NonInfC∧154_0_TEST_STORE(x0[0])≥COND_154_0_TEST_STORE(>(x0[0], 0), x0[0])∧(UIncreasing(COND_154_0_TEST_STORE(>(x0[0], 0), x0[0])), ≥))
(2) (>(x0[0], 0)=TRUE ⇒ 154_0_TEST_STORE(x0[0])≥NonInfC∧154_0_TEST_STORE(x0[0])≥COND_154_0_TEST_STORE(>(x0[0], 0), x0[0])∧(UIncreasing(COND_154_0_TEST_STORE(>(x0[0], 0), x0[0])), ≥))
(3) (0 ≥ 0 ⇒ (UIncreasing(COND_154_0_TEST_STORE(>(x0[0], 0), x0[0])), ≥)∧[(-1)bni_18 + (-1)Bound*bni_18] + [bni_18]x0[0] ≥ 0∧[(-1)bso_19] + x0[0] ≥ 0)
(4) (0 ≥ 0 ⇒ (UIncreasing(COND_154_0_TEST_STORE(>(x0[0], 0), x0[0])), ≥)∧[(-1)bni_18 + (-1)Bound*bni_18] + [bni_18]x0[0] ≥ 0∧[(-1)bso_19] + x0[0] ≥ 0)
(5) (0 ≥ 0 ⇒ (UIncreasing(COND_154_0_TEST_STORE(>(x0[0], 0), x0[0])), ≥)∧[(-1)bni_18 + (-1)Bound*bni_18] + [bni_18]x0[0] ≥ 0∧[(-1)bso_19] + x0[0] ≥ 0)
(6) (0 ≥ 0 ⇒ (UIncreasing(COND_154_0_TEST_STORE(>(x0[0], 0), x0[0])), ≥)∧[bni_18] ≥ 0∧[(-1)bni_18 + (-1)Bound*bni_18] ≥ 0∧[1] ≥ 0∧[(-1)bso_19] ≥ 0)
(7) (>(x0[0], 0)=TRUE∧x0[0]=x0[2] ⇒ 154_0_TEST_STORE(x0[0])≥NonInfC∧154_0_TEST_STORE(x0[0])≥COND_154_0_TEST_STORE(>(x0[0], 0), x0[0])∧(UIncreasing(COND_154_0_TEST_STORE(>(x0[0], 0), x0[0])), ≥))
(8) (>(x0[0], 0)=TRUE ⇒ 154_0_TEST_STORE(x0[0])≥NonInfC∧154_0_TEST_STORE(x0[0])≥COND_154_0_TEST_STORE(>(x0[0], 0), x0[0])∧(UIncreasing(COND_154_0_TEST_STORE(>(x0[0], 0), x0[0])), ≥))
(9) (0 ≥ 0 ⇒ (UIncreasing(COND_154_0_TEST_STORE(>(x0[0], 0), x0[0])), ≥)∧[(-1)bni_18 + (-1)Bound*bni_18] + [bni_18]x0[0] ≥ 0∧[(-1)bso_19] + x0[0] ≥ 0)
(10) (0 ≥ 0 ⇒ (UIncreasing(COND_154_0_TEST_STORE(>(x0[0], 0), x0[0])), ≥)∧[(-1)bni_18 + (-1)Bound*bni_18] + [bni_18]x0[0] ≥ 0∧[(-1)bso_19] + x0[0] ≥ 0)
(11) (0 ≥ 0 ⇒ (UIncreasing(COND_154_0_TEST_STORE(>(x0[0], 0), x0[0])), ≥)∧[(-1)bni_18 + (-1)Bound*bni_18] + [bni_18]x0[0] ≥ 0∧[(-1)bso_19] + x0[0] ≥ 0)
(12) (0 ≥ 0 ⇒ (UIncreasing(COND_154_0_TEST_STORE(>(x0[0], 0), x0[0])), ≥)∧[bni_18] ≥ 0∧[(-1)bni_18 + (-1)Bound*bni_18] ≥ 0∧[1] ≥ 0∧[(-1)bso_19] ≥ 0)
(13) (>(x0[0], 0)=TRUE∧x0[0]=x0[1]∧154_0_test_Store(0)=254_0_test_Return∧x0[1]=x0[3]∧0=x1[3] ⇒ COND_154_0_TEST_STORE(TRUE, x0[1])≥NonInfC∧COND_154_0_TEST_STORE(TRUE, x0[1])≥264_1_TEST_INVOKEMETHOD(154_0_test_Store(0), x0[1], 0)∧(UIncreasing(264_1_TEST_INVOKEMETHOD(154_0_test_Store(0), x0[1], 0)), ≥))
(14) (>(x0[0], 0)=TRUE∧x0[0]=x0[2]∧0=x0[0]1 ⇒ COND_154_0_TEST_STORE(TRUE, x0[2])≥NonInfC∧COND_154_0_TEST_STORE(TRUE, x0[2])≥154_0_TEST_STORE(0)∧(UIncreasing(154_0_TEST_STORE(0)), ≥))
(15) (>(x0[0], 0)=TRUE ⇒ COND_154_0_TEST_STORE(TRUE, x0[0])≥NonInfC∧COND_154_0_TEST_STORE(TRUE, x0[0])≥154_0_TEST_STORE(0)∧(UIncreasing(154_0_TEST_STORE(0)), ≥))
(16) (0 ≥ 0 ⇒ (UIncreasing(154_0_TEST_STORE(0)), ≥)∧[(-1)bni_20 + (-1)Bound*bni_20] ≥ 0∧[(-1)bso_21] ≥ 0)
(17) (0 ≥ 0 ⇒ (UIncreasing(154_0_TEST_STORE(0)), ≥)∧[(-1)bni_20 + (-1)Bound*bni_20] ≥ 0∧[(-1)bso_21] ≥ 0)
(18) (0 ≥ 0 ⇒ (UIncreasing(154_0_TEST_STORE(0)), ≥)∧[(-1)bni_20 + (-1)Bound*bni_20] ≥ 0∧[(-1)bso_21] ≥ 0)
(19) (0 ≥ 0 ⇒ (UIncreasing(154_0_TEST_STORE(0)), ≥)∧0 ≥ 0∧[(-1)bni_20 + (-1)Bound*bni_20] ≥ 0∧0 ≥ 0∧[(-1)bso_21] ≥ 0)
(20) (&&(>=(x1[3], 0), >(x0[3], +(x1[3], 1)))=TRUE∧x0[3]=x0[4]∧x1[3]=x1[4] ⇒ 264_1_TEST_INVOKEMETHOD(254_0_test_Return, x0[3], x1[3])≥NonInfC∧264_1_TEST_INVOKEMETHOD(254_0_test_Return, x0[3], x1[3])≥COND_264_1_TEST_INVOKEMETHOD(&&(>=(x1[3], 0), >(x0[3], +(x1[3], 1))), 254_0_test_Return, x0[3], x1[3])∧(UIncreasing(COND_264_1_TEST_INVOKEMETHOD(&&(>=(x1[3], 0), >(x0[3], +(x1[3], 1))), 254_0_test_Return, x0[3], x1[3])), ≥))
(21) (&&(>=(x1[3], 0), >(x0[3], +(x1[3], 1)))=TRUE ⇒ 264_1_TEST_INVOKEMETHOD(254_0_test_Return, x0[3], x1[3])≥NonInfC∧264_1_TEST_INVOKEMETHOD(254_0_test_Return, x0[3], x1[3])≥COND_264_1_TEST_INVOKEMETHOD(&&(>=(x1[3], 0), >(x0[3], +(x1[3], 1))), 254_0_test_Return, x0[3], x1[3])∧(UIncreasing(COND_264_1_TEST_INVOKEMETHOD(&&(>=(x1[3], 0), >(x0[3], +(x1[3], 1))), 254_0_test_Return, x0[3], x1[3])), ≥))
(22) (0 ≥ 0 ⇒ (UIncreasing(COND_264_1_TEST_INVOKEMETHOD(&&(>=(x1[3], 0), >(x0[3], +(x1[3], 1))), 254_0_test_Return, x0[3], x1[3])), ≥)∧[bni_22 + (-1)Bound*bni_22] + [bni_22]x1[3] + [bni_22]x0[3] ≥ 0∧[2 + (-1)bso_23] + x1[3] + x0[3] ≥ 0)
(23) (0 ≥ 0 ⇒ (UIncreasing(COND_264_1_TEST_INVOKEMETHOD(&&(>=(x1[3], 0), >(x0[3], +(x1[3], 1))), 254_0_test_Return, x0[3], x1[3])), ≥)∧[bni_22 + (-1)Bound*bni_22] + [bni_22]x1[3] + [bni_22]x0[3] ≥ 0∧[2 + (-1)bso_23] + x1[3] + x0[3] ≥ 0)
(24) (0 ≥ 0 ⇒ (UIncreasing(COND_264_1_TEST_INVOKEMETHOD(&&(>=(x1[3], 0), >(x0[3], +(x1[3], 1))), 254_0_test_Return, x0[3], x1[3])), ≥)∧[bni_22 + (-1)Bound*bni_22] + [bni_22]x1[3] + [bni_22]x0[3] ≥ 0∧[2 + (-1)bso_23] + x1[3] + x0[3] ≥ 0)
(25) (0 ≥ 0 ⇒ (UIncreasing(COND_264_1_TEST_INVOKEMETHOD(&&(>=(x1[3], 0), >(x0[3], +(x1[3], 1))), 254_0_test_Return, x0[3], x1[3])), ≥)∧[bni_22] ≥ 0∧[bni_22] ≥ 0∧[bni_22 + (-1)Bound*bni_22] ≥ 0∧[1] ≥ 0∧[1] ≥ 0∧[2 + (-1)bso_23] ≥ 0)
(26) (&&(>=(x1[3], 0), >(x0[3], +(x1[3], 1)))=TRUE∧x0[3]=x0[5]∧x1[3]=x1[5] ⇒ 264_1_TEST_INVOKEMETHOD(254_0_test_Return, x0[3], x1[3])≥NonInfC∧264_1_TEST_INVOKEMETHOD(254_0_test_Return, x0[3], x1[3])≥COND_264_1_TEST_INVOKEMETHOD(&&(>=(x1[3], 0), >(x0[3], +(x1[3], 1))), 254_0_test_Return, x0[3], x1[3])∧(UIncreasing(COND_264_1_TEST_INVOKEMETHOD(&&(>=(x1[3], 0), >(x0[3], +(x1[3], 1))), 254_0_test_Return, x0[3], x1[3])), ≥))
(27) (&&(>=(x1[3], 0), >(x0[3], +(x1[3], 1)))=TRUE ⇒ 264_1_TEST_INVOKEMETHOD(254_0_test_Return, x0[3], x1[3])≥NonInfC∧264_1_TEST_INVOKEMETHOD(254_0_test_Return, x0[3], x1[3])≥COND_264_1_TEST_INVOKEMETHOD(&&(>=(x1[3], 0), >(x0[3], +(x1[3], 1))), 254_0_test_Return, x0[3], x1[3])∧(UIncreasing(COND_264_1_TEST_INVOKEMETHOD(&&(>=(x1[3], 0), >(x0[3], +(x1[3], 1))), 254_0_test_Return, x0[3], x1[3])), ≥))
(28) (0 ≥ 0 ⇒ (UIncreasing(COND_264_1_TEST_INVOKEMETHOD(&&(>=(x1[3], 0), >(x0[3], +(x1[3], 1))), 254_0_test_Return, x0[3], x1[3])), ≥)∧[bni_22 + (-1)Bound*bni_22] + [bni_22]x1[3] + [bni_22]x0[3] ≥ 0∧[2 + (-1)bso_23] + x1[3] + x0[3] ≥ 0)
(29) (0 ≥ 0 ⇒ (UIncreasing(COND_264_1_TEST_INVOKEMETHOD(&&(>=(x1[3], 0), >(x0[3], +(x1[3], 1))), 254_0_test_Return, x0[3], x1[3])), ≥)∧[bni_22 + (-1)Bound*bni_22] + [bni_22]x1[3] + [bni_22]x0[3] ≥ 0∧[2 + (-1)bso_23] + x1[3] + x0[3] ≥ 0)
(30) (0 ≥ 0 ⇒ (UIncreasing(COND_264_1_TEST_INVOKEMETHOD(&&(>=(x1[3], 0), >(x0[3], +(x1[3], 1))), 254_0_test_Return, x0[3], x1[3])), ≥)∧[bni_22 + (-1)Bound*bni_22] + [bni_22]x1[3] + [bni_22]x0[3] ≥ 0∧[2 + (-1)bso_23] + x1[3] + x0[3] ≥ 0)
(31) (0 ≥ 0 ⇒ (UIncreasing(COND_264_1_TEST_INVOKEMETHOD(&&(>=(x1[3], 0), >(x0[3], +(x1[3], 1))), 254_0_test_Return, x0[3], x1[3])), ≥)∧[bni_22] ≥ 0∧[bni_22] ≥ 0∧[bni_22 + (-1)Bound*bni_22] ≥ 0∧[1] ≥ 0∧[1] ≥ 0∧[2 + (-1)bso_23] ≥ 0)
(32) (&&(>=(x1[3], 0), >(x0[3], +(x1[3], 1)))=TRUE∧x0[3]=x0[4]∧x1[3]=x1[4]∧154_0_test_Store(+(x1[4], 1))=254_0_test_Return∧x0[4]=x0[3]1∧+(x1[4], 1)=x1[3]1 ⇒ COND_264_1_TEST_INVOKEMETHOD(TRUE, 254_0_test_Return, x0[4], x1[4])≥NonInfC∧COND_264_1_TEST_INVOKEMETHOD(TRUE, 254_0_test_Return, x0[4], x1[4])≥264_1_TEST_INVOKEMETHOD(154_0_test_Store(+(x1[4], 1)), x0[4], +(x1[4], 1))∧(UIncreasing(264_1_TEST_INVOKEMETHOD(154_0_test_Store(+(x1[4], 1)), x0[4], +(x1[4], 1))), ≥))
(33) (&&(>=(x1[3], 0), >(x0[3], +(x1[3], 1)))=TRUE∧x0[3]=x0[5]∧x1[3]=x1[5]∧+(x1[5], 1)=x0[0] ⇒ COND_264_1_TEST_INVOKEMETHOD(TRUE, 254_0_test_Return, x0[5], x1[5])≥NonInfC∧COND_264_1_TEST_INVOKEMETHOD(TRUE, 254_0_test_Return, x0[5], x1[5])≥154_0_TEST_STORE(+(x1[5], 1))∧(UIncreasing(154_0_TEST_STORE(+(x1[5], 1))), ≥))
(34) (&&(>=(x1[3], 0), >(x0[3], +(x1[3], 1)))=TRUE ⇒ COND_264_1_TEST_INVOKEMETHOD(TRUE, 254_0_test_Return, x0[3], x1[3])≥NonInfC∧COND_264_1_TEST_INVOKEMETHOD(TRUE, 254_0_test_Return, x0[3], x1[3])≥154_0_TEST_STORE(+(x1[3], 1))∧(UIncreasing(154_0_TEST_STORE(+(x1[5], 1))), ≥))
(35) (0 ≥ 0 ⇒ (UIncreasing(154_0_TEST_STORE(+(x1[5], 1))), ≥)∧[(-1)bni_24 + (-1)Bound*bni_24] ≥ 0∧[(-1)bso_25] ≥ 0)
(36) (0 ≥ 0 ⇒ (UIncreasing(154_0_TEST_STORE(+(x1[5], 1))), ≥)∧[(-1)bni_24 + (-1)Bound*bni_24] ≥ 0∧[(-1)bso_25] ≥ 0)
(37) (0 ≥ 0 ⇒ (UIncreasing(154_0_TEST_STORE(+(x1[5], 1))), ≥)∧[(-1)bni_24 + (-1)Bound*bni_24] ≥ 0∧[(-1)bso_25] ≥ 0)
(38) (0 ≥ 0 ⇒ (UIncreasing(154_0_TEST_STORE(+(x1[5], 1))), ≥)∧0 ≥ 0∧0 ≥ 0∧[(-1)bni_24 + (-1)Bound*bni_24] ≥ 0∧0 ≥ 0∧0 ≥ 0∧[(-1)bso_25] ≥ 0)
POL(TRUE) = 0
POL(FALSE) = 0
POL(154_0_TEST_STORE(x1)) = [-1] + x1
POL(COND_154_0_TEST_STORE(x1, x2)) = [-1]
POL(>(x1, x2)) = 0
POL(0) = 0
POL(264_1_TEST_INVOKEMETHOD(x1, x2, x3)) = [1] + x3 + x2 + [-1]x1
POL(154_0_test_Store(x1)) = 0
POL(254_0_test_Return) = 0
POL(COND_264_1_TEST_INVOKEMETHOD(x1, x2, x3, x4)) = [-1] + [-1]x2
POL(&&(x1, x2)) = 0
POL(>=(x1, x2)) = 0
POL(+(x1, x2)) = 0
POL(1) = 0
COND_154_0_TEST_STORE(TRUE, x0[1]) → 264_1_TEST_INVOKEMETHOD(154_0_test_Store(0), x0[1], 0)
264_1_TEST_INVOKEMETHOD(254_0_test_Return, x0[3], x1[3]) → COND_264_1_TEST_INVOKEMETHOD(&&(>=(x1[3], 0), >(x0[3], +(x1[3], 1))), 254_0_test_Return, x0[3], x1[3])
COND_264_1_TEST_INVOKEMETHOD(TRUE, 254_0_test_Return, x0[4], x1[4]) → 264_1_TEST_INVOKEMETHOD(154_0_test_Store(+(x1[4], 1)), x0[4], +(x1[4], 1))
154_0_TEST_STORE(x0[0]) → COND_154_0_TEST_STORE(>(x0[0], 0), x0[0])
COND_154_0_TEST_STORE(TRUE, x0[1]) → 264_1_TEST_INVOKEMETHOD(154_0_test_Store(0), x0[1], 0)
COND_154_0_TEST_STORE(TRUE, x0[2]) → 154_0_TEST_STORE(0)
264_1_TEST_INVOKEMETHOD(254_0_test_Return, x0[3], x1[3]) → COND_264_1_TEST_INVOKEMETHOD(&&(>=(x1[3], 0), >(x0[3], +(x1[3], 1))), 254_0_test_Return, x0[3], x1[3])
COND_264_1_TEST_INVOKEMETHOD(TRUE, 254_0_test_Return, x0[4], x1[4]) → 264_1_TEST_INVOKEMETHOD(154_0_test_Store(+(x1[4], 1)), x0[4], +(x1[4], 1))
COND_264_1_TEST_INVOKEMETHOD(TRUE, 254_0_test_Return, x0[5], x1[5]) → 154_0_TEST_STORE(+(x1[5], 1))
154_0_TEST_STORE(x0[0]) → COND_154_0_TEST_STORE(>(x0[0], 0), x0[0])
COND_154_0_TEST_STORE(TRUE, x0[2]) → 154_0_TEST_STORE(0)
COND_264_1_TEST_INVOKEMETHOD(TRUE, 254_0_test_Return, x0[5], x1[5]) → 154_0_TEST_STORE(+(x1[5], 1))
!= | ~ | Neq: (Integer, Integer) -> Boolean |
* | ~ | Mul: (Integer, Integer) -> Integer |
>= | ~ | Ge: (Integer, Integer) -> Boolean |
-1 | ~ | UnaryMinus: (Integer) -> Integer |
| | ~ | Bwor: (Integer, Integer) -> Integer |
/ | ~ | Div: (Integer, Integer) -> Integer |
= | ~ | Eq: (Integer, Integer) -> Boolean |
~ | Bwxor: (Integer, Integer) -> Integer | |
|| | ~ | Lor: (Boolean, Boolean) -> Boolean |
! | ~ | Lnot: (Boolean) -> Boolean |
< | ~ | Lt: (Integer, Integer) -> Boolean |
- | ~ | Sub: (Integer, Integer) -> Integer |
<= | ~ | Le: (Integer, Integer) -> Boolean |
> | ~ | Gt: (Integer, Integer) -> Boolean |
~ | ~ | Bwnot: (Integer) -> Integer |
% | ~ | Mod: (Integer, Integer) -> Integer |
& | ~ | Bwand: (Integer, Integer) -> Integer |
+ | ~ | Add: (Integer, Integer) -> Integer |
&& | ~ | Land: (Boolean, Boolean) -> Boolean |
Integer
(2) -> (0), if ((0 →* x0[0]))
(5) -> (0), if ((x1[5] + 1 →* x0[0]))
(0) -> (2), if ((x0[0] > 0 →* TRUE)∧(x0[0] →* x0[2]))
!= | ~ | Neq: (Integer, Integer) -> Boolean |
* | ~ | Mul: (Integer, Integer) -> Integer |
>= | ~ | Ge: (Integer, Integer) -> Boolean |
-1 | ~ | UnaryMinus: (Integer) -> Integer |
| | ~ | Bwor: (Integer, Integer) -> Integer |
/ | ~ | Div: (Integer, Integer) -> Integer |
= | ~ | Eq: (Integer, Integer) -> Boolean |
~ | Bwxor: (Integer, Integer) -> Integer | |
|| | ~ | Lor: (Boolean, Boolean) -> Boolean |
! | ~ | Lnot: (Boolean) -> Boolean |
< | ~ | Lt: (Integer, Integer) -> Boolean |
- | ~ | Sub: (Integer, Integer) -> Integer |
<= | ~ | Le: (Integer, Integer) -> Boolean |
> | ~ | Gt: (Integer, Integer) -> Boolean |
~ | ~ | Bwnot: (Integer) -> Integer |
% | ~ | Mod: (Integer, Integer) -> Integer |
& | ~ | Bwand: (Integer, Integer) -> Integer |
+ | ~ | Add: (Integer, Integer) -> Integer |
&& | ~ | Land: (Boolean, Boolean) -> Boolean |
Integer
(2) -> (0), if ((0 →* x0[0]))
(0) -> (2), if ((x0[0] > 0 →* TRUE)∧(x0[0] →* x0[2]))
(1) (>(x0[0], 0)=TRUE∧x0[0]=x0[2]∧0=x0[0]1 ⇒ COND_154_0_TEST_STORE(TRUE, x0[2])≥NonInfC∧COND_154_0_TEST_STORE(TRUE, x0[2])≥154_0_TEST_STORE(0)∧(UIncreasing(154_0_TEST_STORE(0)), ≥))
(2) (>(x0[0], 0)=TRUE ⇒ COND_154_0_TEST_STORE(TRUE, x0[0])≥NonInfC∧COND_154_0_TEST_STORE(TRUE, x0[0])≥154_0_TEST_STORE(0)∧(UIncreasing(154_0_TEST_STORE(0)), ≥))
(3) (x0[0] + [-1] ≥ 0 ⇒ (UIncreasing(154_0_TEST_STORE(0)), ≥)∧[(2)bni_9 + (-1)Bound*bni_9] ≥ 0∧[(-1)bso_10] ≥ 0)
(4) (x0[0] + [-1] ≥ 0 ⇒ (UIncreasing(154_0_TEST_STORE(0)), ≥)∧[(2)bni_9 + (-1)Bound*bni_9] ≥ 0∧[(-1)bso_10] ≥ 0)
(5) (x0[0] + [-1] ≥ 0 ⇒ (UIncreasing(154_0_TEST_STORE(0)), ≥)∧[(2)bni_9 + (-1)Bound*bni_9] ≥ 0∧[(-1)bso_10] ≥ 0)
(6) (x0[0] ≥ 0 ⇒ (UIncreasing(154_0_TEST_STORE(0)), ≥)∧[(2)bni_9 + (-1)Bound*bni_9] ≥ 0∧[(-1)bso_10] ≥ 0)
(7) (>(x0[0], 0)=TRUE∧x0[0]=x0[2] ⇒ 154_0_TEST_STORE(x0[0])≥NonInfC∧154_0_TEST_STORE(x0[0])≥COND_154_0_TEST_STORE(>(x0[0], 0), x0[0])∧(UIncreasing(COND_154_0_TEST_STORE(>(x0[0], 0), x0[0])), ≥))
(8) (>(x0[0], 0)=TRUE ⇒ 154_0_TEST_STORE(x0[0])≥NonInfC∧154_0_TEST_STORE(x0[0])≥COND_154_0_TEST_STORE(>(x0[0], 0), x0[0])∧(UIncreasing(COND_154_0_TEST_STORE(>(x0[0], 0), x0[0])), ≥))
(9) (x0[0] + [-1] ≥ 0 ⇒ (UIncreasing(COND_154_0_TEST_STORE(>(x0[0], 0), x0[0])), ≥)∧[(2)bni_11 + (-1)Bound*bni_11] + [bni_11]x0[0] ≥ 0∧[(-1)bso_12] + x0[0] ≥ 0)
(10) (x0[0] + [-1] ≥ 0 ⇒ (UIncreasing(COND_154_0_TEST_STORE(>(x0[0], 0), x0[0])), ≥)∧[(2)bni_11 + (-1)Bound*bni_11] + [bni_11]x0[0] ≥ 0∧[(-1)bso_12] + x0[0] ≥ 0)
(11) (x0[0] + [-1] ≥ 0 ⇒ (UIncreasing(COND_154_0_TEST_STORE(>(x0[0], 0), x0[0])), ≥)∧[(2)bni_11 + (-1)Bound*bni_11] + [bni_11]x0[0] ≥ 0∧[(-1)bso_12] + x0[0] ≥ 0)
(12) (x0[0] ≥ 0 ⇒ (UIncreasing(COND_154_0_TEST_STORE(>(x0[0], 0), x0[0])), ≥)∧[(3)bni_11 + (-1)Bound*bni_11] + [bni_11]x0[0] ≥ 0∧[1 + (-1)bso_12] + x0[0] ≥ 0)
POL(TRUE) = 0
POL(FALSE) = 0
POL(COND_154_0_TEST_STORE(x1, x2)) = [2]
POL(154_0_TEST_STORE(x1)) = [2] + x1
POL(0) = 0
POL(>(x1, x2)) = 0
154_0_TEST_STORE(x0[0]) → COND_154_0_TEST_STORE(>(x0[0], 0), x0[0])
COND_154_0_TEST_STORE(TRUE, x0[2]) → 154_0_TEST_STORE(0)
154_0_TEST_STORE(x0[0]) → COND_154_0_TEST_STORE(>(x0[0], 0), x0[0])
COND_154_0_TEST_STORE(TRUE, x0[2]) → 154_0_TEST_STORE(0)
!= | ~ | Neq: (Integer, Integer) -> Boolean |
* | ~ | Mul: (Integer, Integer) -> Integer |
>= | ~ | Ge: (Integer, Integer) -> Boolean |
-1 | ~ | UnaryMinus: (Integer) -> Integer |
| | ~ | Bwor: (Integer, Integer) -> Integer |
/ | ~ | Div: (Integer, Integer) -> Integer |
= | ~ | Eq: (Integer, Integer) -> Boolean |
~ | Bwxor: (Integer, Integer) -> Integer | |
|| | ~ | Lor: (Boolean, Boolean) -> Boolean |
! | ~ | Lnot: (Boolean) -> Boolean |
< | ~ | Lt: (Integer, Integer) -> Boolean |
- | ~ | Sub: (Integer, Integer) -> Integer |
<= | ~ | Le: (Integer, Integer) -> Boolean |
> | ~ | Gt: (Integer, Integer) -> Boolean |
~ | ~ | Bwnot: (Integer) -> Integer |
% | ~ | Mod: (Integer, Integer) -> Integer |
& | ~ | Bwand: (Integer, Integer) -> Integer |
+ | ~ | Add: (Integer, Integer) -> Integer |
&& | ~ | Land: (Boolean, Boolean) -> Boolean |